Data Science
About Course
CURRICULUM
Excel
Excel Introduction & Math FormulasText, Datetime, Logical Function Lookup & Formatting, Data ValidationCharts, Macros, Shortcuts
Python
Environment setup Basics Data TypesData Type and Data StructureData Structure & String FormattingConditional StatementFunctions & Lambda(Advance Function)Function & ModulesNumpyPandas, Matplotlib, Seaborn, Exception Handling
Machine Learning
Machine Learning IntroductionLinear & Logistic RegressionKNNDecision TreeRandom Forest & Extra Random TreesXGBOOSTDBSCAN ClusteringNeural NetworkRidge and Loasso RegularizationK Means Clustering & Mini Batch K Means Clustering
Projects
Bank Loan Prediction Project
NLP
Introduction to NLP 1Tagging & HMMNaive Bayes & Sentiment AnalysisWord2Vec, Embedding, Dot ProductNeural Network, RNN, Bi-Directional RNNPractical Implementation of Count Vectorizer(Weather Disaster)Practical Implementation of Amazon Alexa datasetPOS tagging & NERNews Headline Sarcasm Detection, LDA, Gensim
Project
NLP Weather Prediction
Deep Learning
Introduction to Deep LearningMNIST Handwritten digit classificationCNN CNN ImplementationRCNN, Fast RCNN, Faster RCNN, Tensorflow HUBFast RCNN ImplementationModel DeploymentDetectron2 ModelSentiment Classification with Neural Network
Project
YOLO V4 Project
Our Certifications
What Will You Learn?
- Full lifetime access
- Access on mobile and TV
- Certificate of completion
- Downloadable resources
Course Content
Excel
In this module we will see excel for Data Science
-
Excel Introduction & Math Formulas
50:25 -
Text, Datetime, Logical Function
56:28 -
Lookup & Formatting, Data Validation
44:17 -
Charts, Macros, Shortcuts
50:34
Python
-
Environment setup – 1
01:00:42 -
Basics Data Types 2
01:00:44 -
Data Type and Data Structure 3
01:00:43 -
Data Structure & String Formatting 4
58:18 -
Conditional Statement 5
58:46 -
Functions & Lambda(Advance Function) 6
01:00:08 -
Function & Modules 7
01:00:05 -
Numpy 8
01:00:28 -
Pandas, Matplotlib, Seaborn, Exception Handling 9
56:50
Machine Learning
In this module, we learn Machine Learning according to Data Science.
-
Machine Learning Introduction 1
01:00:28 -
Linear & Logistic Regression 2
59:47 -
KNN 3
58:54 -
Decision Tree 4
01:00:28 -
Random Forest & Extra Random Trees 5
52:54 -
XGBOOST 6
51:30 -
DBSCAN Clustering 9
51:05 -
Neural Network 7
55:56 -
Ridge and Loasso Regularization 10
50:47 -
Bank Loan Prediction Project
54:54 -
K Means Clustering & Mini Batch K Means Clustering 8
50:31
NLP
-
Introduction to NLP 1
50:56 -
Tagging & HMM 2
53:56 -
Naive Bayes & Sentiment Analysis 3
52:42 -
Word2Vec, Embedding, Dot Product 4
56:38 -
Neural Network, RNN, Bi-Directional RNN 5
52:36 -
Practical Implementation of Count Vectorizer(Weather Disaster) 6
52:10 -
Practical Implementation of Amazon Alexa dataset 7
41:35 -
POS tagging & NER 8
44:45 -
News Headline Sarcasm Detection, LDA, Gensim 9
46:42 -
NLP Weather Prediction Project Part -1
07:00 -
NLP Weather Prediction Project Part – 2
55:06
Deep Learning
-
Introduction to Deep Learning 1
51:15 -
MNIST Handwritten digit classification 2
44:06 -
CNN 3
43:59 -
CNN Implementation 4
51:37 -
RCNN, Fast RCNN, Faster RCNN, Tensorflow HUB 5
46:43 -
Fast RCNN Implementation 6
32:16 -
Model Deployment 7
23:00 -
YOLO V4 Project 8
50:45 -
Detectron2 Model 9
39:45 -
Sentiment Classification with Neural Network
01:01:08